Hashing Based Answer Selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based Answer Selection

Obtaining informative answer passages and ranking them appropriately has previously been error prone for complex, non-factoid questions related to action and event occurrences, causes, and spatiotemporal attributes. A fundamental problem that has hampered the efforts to date has been the inability to extract relations of interest that determine the search for relevant answer passages. We report...

متن کامل

Discriminative Projection Selection Based Face Image Hashing

Face image hashing is an emerging method used in biometric verification systems. In this paper, we propose a novel face image hashing method based on a new technique called discriminative projection selection. We apply the Fisher criterion for selecting the rows of a random projection matrix in a user-dependent fashion. Moreover, another contribution of this paper is to employ a bimodal Gaussia...

متن کامل

Prototype-Based Sample Selection for Active Hashing

E-mail: [email protected] Abstract: Several hashing-based methods for Approximate Nearest Neighbors (ANN) search in a large data set have been proposed recently. In particular, semi-supervised hashing utilizes semantic similarity given for a small fraction of pairwise data samples and active hashing aims to improve the performance for ANN search by relying on an expert for the labeling of the...

متن کامل

Selection of Hashing Algorithms

INTRODUCTION The National Software Reference Library (NSRL) Reference Data Set (RDS) is built on file signature generation technology that is used primarily in cryptography. The selection of the specific file signature generation routines is based on customer requirements and the necessity to provide a level of confidence in the reference data that will allow it to be used in the U.S. Courts. T...

متن کامل

Locality-Sensitive Hashing with Margin Based Feature Selection

We propose a learning method with feature selection for Locality-Sensitive Hashing. Locality-Sensitive Hashing converts feature vectors into bit arrays. These bit arrays can be used to perform similarity searches and personal authentication. The proposed method uses bit arrays longer than those used in the end for similarity and other searches and by learning selects the bits that will be used....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2020

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v34i05.6473